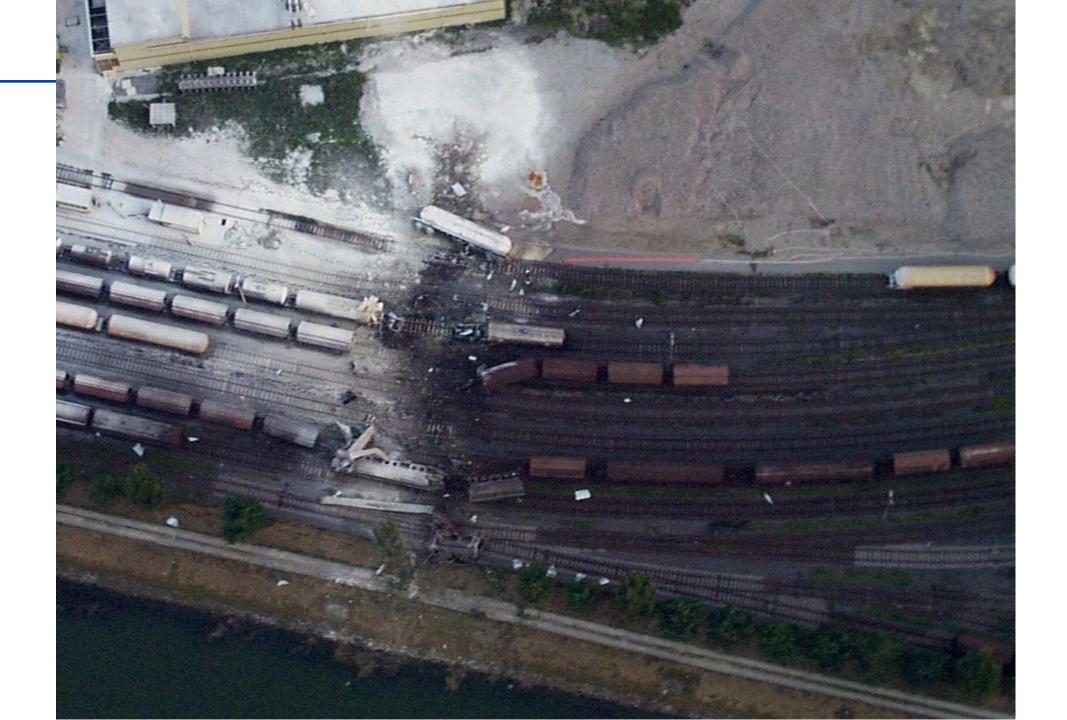
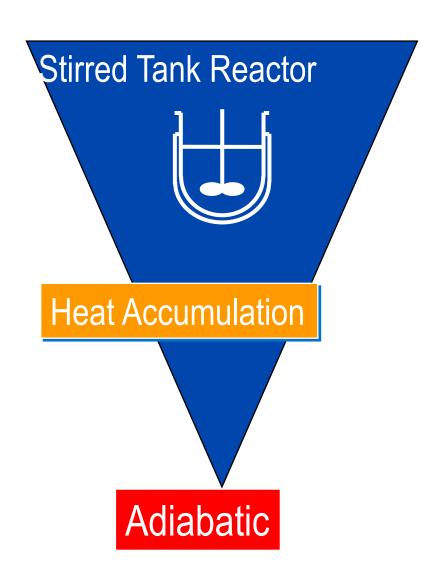


Heat Confinement


Module 4

ENG 431: Safety Chemical Processes

Annik Nanchen



- Introduction
- Mechanism of heat transfer
 - Stirred systems: forced convection
 - Solid systems, viscous liquids: conduction
 - Low viscosity liquids: natural convection
- Analysis procedure
- Practical examples

Chapter 13

Chapter 12

- Decomposition of a reaction mass. ∆Tad 200°C, c'p: 1.7 kJ/kg.K, Ea: 100 kJ/mol
- Reaction mass is in different containers (different sizes)

Heat release rate	Temperature at beginning	Adiabatic				
(W/kg)	of storage (°C)		0.5 kg	50 kg	5000 kg	
40	129	200				ΔT [°C]
10		0.6				Released after [h]
1	100	200				ΔT [°C]
		5.4				Released after [h]
0.1	75	200				ΔT [°C]
V. I		47				Released after [h]
0.04	50	200				ΔT [°C]
0.01	53	417				Released after [h]

- Decomposition of a reaction mass. ∆Tad 200°C
- Reaction mass is in different containers (different sizes)

Heat release rate	Temperature at beginning of storage (°C)	Adiabatic				
(W/kg)				0.5 kg	50 kg	5000 kg
40	420	200°C	191°C	200°C	200°C	ΔT [°C]
10	129	0.6 h	0.6 h	0.6 h	0.6 h	Released after [h]
1	100					ΔT [°C]
	100					Released after [h]
0.1	0.1 75					ΔT [°C]
0.1						Released after [h]
0.04	52					ΔT [°C]
0.01	53					Released after [h]

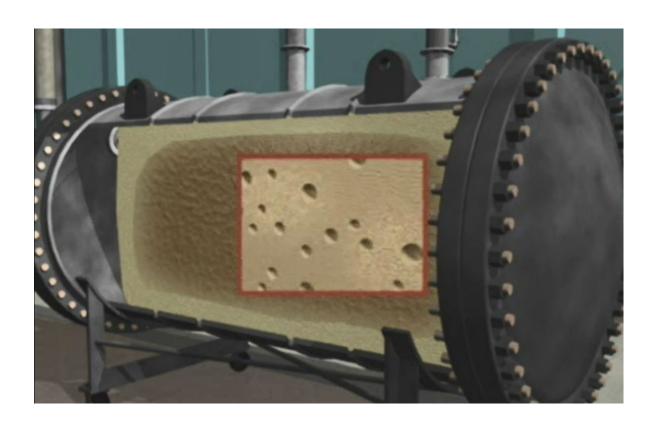
- Decomposition of a reaction mass. ∆Tad 200°C
- Reaction mass is in different containers (different sizes)

Heat release rate	Temperature at beginning of storage (°C)	Adiabatic				
(W/kg)			0.5 kg	50 kg	5000 kg	
40	129	200°C	191°C	200°C	200°C	ΔT [°C]
10		0.6 h	0.6 h	0.6 h	0.6 h	Released after [h]
1	100	200°C	5.8°C	200°C	200°C	ΔT [°C]
		5.5 h	6h	5.5 h	5.5 h	Released after [h]
0.1	75					ΔT [°C]
0.1						Released after [h]
0.04	52					ΔT [°C]
0.01	53					Released after [h]

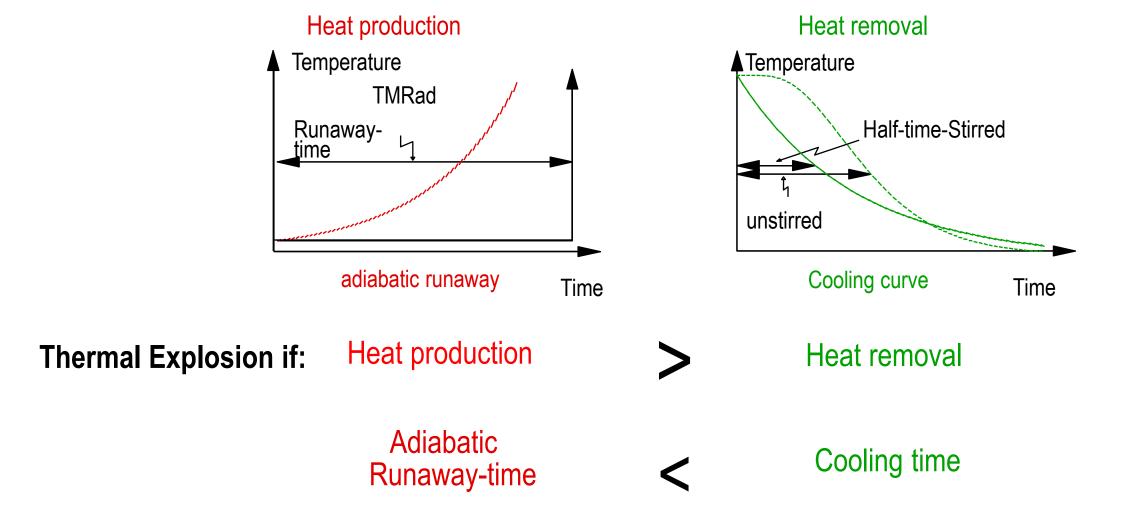
- Decomposition of a reaction mass. ∆Tad 200°C
- Reaction mass is in different containers (different sizes)

Heat release rate	Temperature at beginning of storage (°C)	Adiabatic				
(W/kg)			0.5 kg	50 kg	5000 kg	
40	129	200°C	191°C	200°C	200°C	ΔT [°C]
10		0.6 h	0.6 h	0.6 h	0.6 h	Released after [h]
1	100	200°C	5.8°C	200°C	200°C	ΔT [°C]
		5.5 h	6h	5.5 h	5.5 h	Released after [h]
0.1	75					ΔT [°C]
0.1						Released after [h]
0.04	52					ΔT [°C]
0.01	53					Released after [h]

- Decomposition of a reaction mass. ∆Tad 200°C
- Reaction mass is in different containers (different sizes)

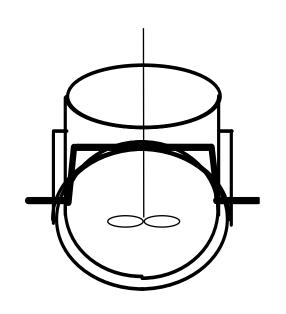

Heat release rate	Temperature at beginning	Adiabatic				
(W/kg)	of storage (°C)		0.5 kg	50 kg	5000 kg	
40	129	200°C	191°C	200°C	200°C	ΔT [°C]
10		0.6 h	0.6 h	0.6 h	0.6 h	Released after [h]
1	100	200°C	5.8°C	200°C	200°C	ΔT [°C]
		5.5 h	6h	5.5 h	5.5 h	Released after [h]
0.1	75	200°C	0.5°C	13°C	200°C	ΔT [°C]
		48 h	20h	48 h	48 h	Released after [h]
0.04	52					ΔT [°C]
0.01	53					Released after [h]

- Decomposition of a reaction mass. ∆Tad 200°C
- Reaction mass is in different containers (different sizes)


Heat release rate	Temperature at beginning of storage (°C)	Adiabatic				
(W/kg)			0.5 kg	50 kg	5000 kg	
40	129	200°C	191°C	200°C	200°C	ΔT [°C]
10		0.6 h	0.6 h	0.6 h	0.6 h	Released after [h]
1	100	200°C	5.8°C	200°C	200°C	ΔT [°C]
		5.5 h	6h	5.5 h	5.5 h	Released after [h]
0.1	75	200°C	0.5°C	13°C	200°C	ΔT [°C]
U. I	73	48 h	20h	48 h	48 h	Released after [h]
0.04	52	200°C		0.7°C	165°C	ΔT [°C]
0.01	53	420 h		154h	420 h	Released after [h]

Heat Accumulation in Industrial Context

- Hot discharge
- Heating chambers
- Storage
- Transport
- Inadvertent shut down
- Heated pipes



https://www.csb.gov/videos/reactive-hazards/

- Introduction
- Mechanism of heat transfer
 - Stirred systems, forced convection
 - Solid systems, viscous liquids, conduction
 - Low viscosity liquids, Natural convection
- Analysis procedure
- Practical examples

- Semenov
- Newtonian cooling

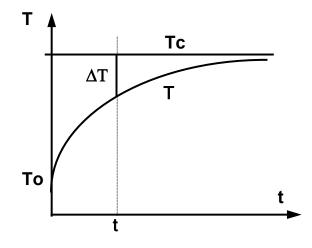
$$q_{ex} = U \cdot A \cdot (T - T_C)$$

 $U: Overal\ heat\ transfer\ coefficient\ \lceil W\ m^{-2}\ K^{-1}\ \rceil$

A: Heat exchange area $\begin{bmatrix} m^2 \end{bmatrix}$

T: Temperature reacting medium [${}^{\circ}C,K$]

 T_C : Temperature cooling medium [${}^{\circ}C,K$]


$$M \cdot c'_{p} \cdot \frac{dT}{dt} = -U \cdot A \cdot (T - T_{C})$$

$$-M \cdot c'_{p} \cdot \frac{d(\Delta T)}{dt} = U \cdot A \cdot \Delta T$$

$$-\frac{M \cdot c'_{p}}{U \cdot A} \cdot \frac{d(\Delta T)}{\Delta T} = dt$$

$$\frac{M \cdot c'_p}{U \cdot A} = \tau_C$$

$$-\frac{d(\Delta T)}{\Delta T} = \frac{t}{\tau}$$

$$\left(\frac{\Delta T}{\Delta T_0}\right) = \exp\left(-\frac{t}{\tau_C}\right)$$

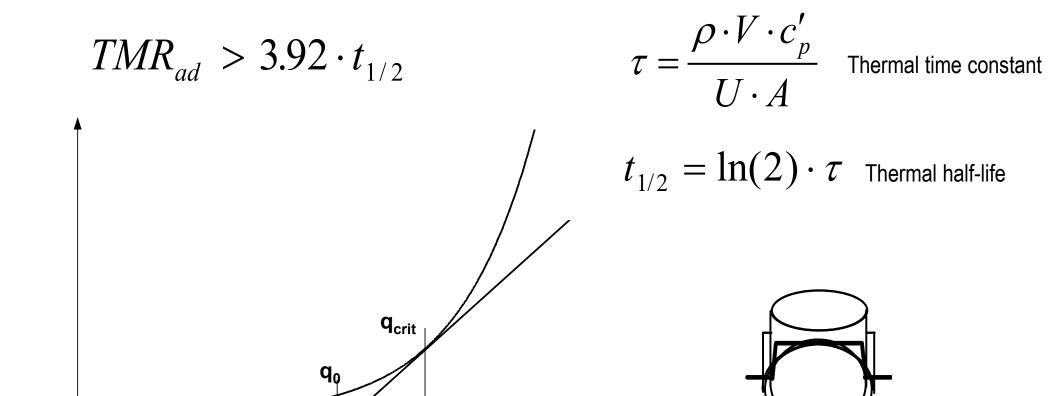
Heat Balance

Solves both equation if
$$\Delta T_{crit} = T_{crit} - T_0 = \frac{RT_{crit}^2}{E} \approx \frac{RT_0^2}{E}$$

$$Q_{rx}.\rho \cdot V \cdot k_0 \cdot \exp\left[\frac{-E}{R}\left(\frac{1}{T_{crit}} - \frac{1}{T_0}\right)\right] = U \cdot A \cdot \Delta T_{crit} \quad \text{ since } \quad q_{crit} = q_0 \cdot \exp\left[\frac{-E}{R}\left(\frac{1}{T_{crit}} - \frac{1}{T_0}\right)\right]$$

$$\frac{-E}{R} \left(\frac{1}{T_{crit}} - \frac{1}{T_0} \right) \approx \frac{-E}{RT_{crit}^2} (T_{crit} - T_0) = 1 \quad \text{since} \quad \Delta T_{crit} = \frac{RT_0^2}{E}$$

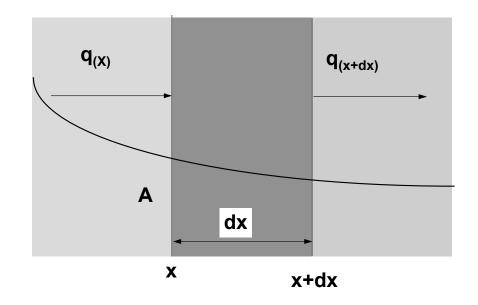
$$k_0 \cdot e \cdot \Delta T_{ad} = \frac{U \cdot A}{\rho \cdot V \cdot c'_p} \cdot \frac{RT_0^2}{E}$$


$$\frac{1}{k_0 \cdot \Delta T_{ad}} \cdot \frac{RT_0^2}{E} = TMR_{ad}$$

Thermal half-life
$$t_{1/2} = \ln(2) \cdot au$$

Thermal time constant $\tau = \frac{\rho \cdot V \cdot c'_{\rho}}{U \cdot A}$

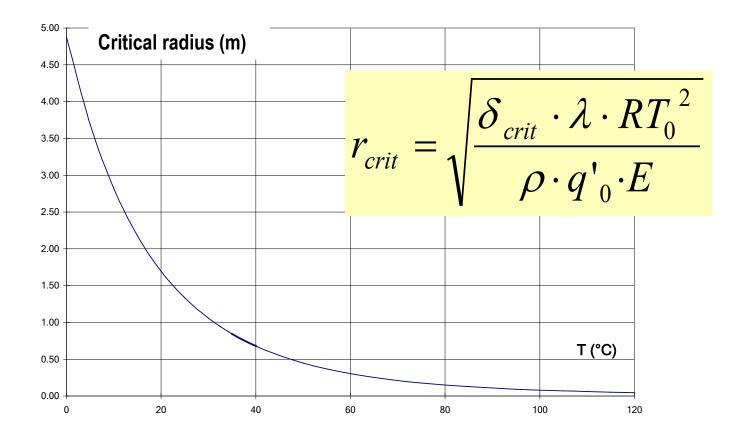
$$TMR_{ad} = \frac{e}{\ln(2)} \cdot t_{1/2} = 3.92 \cdot t_{1/2}$$


Semenov

T_{crit}

- Introduction
- Mechanism of heat transfer
 - Stirred systems, forced convection
 - Solid systems, viscous liquids, conduction
 - Low viscosity liquids, Natural convection
- Analysis procedure
- Practical examples

Heat Conduction in a Solid


$$\vec{q} = -\lambda \vec{\nabla} T$$

Thermal conductivity: λ [W/(K·m)]

$$\frac{\partial^2 T}{\partial x^2} = \frac{\rho \cdot c_p'}{\lambda} \frac{\partial T}{\partial t} = \frac{1}{a} \frac{\partial T}{\partial t}$$

Thermal diffusivity: a [m²/s] $a = \frac{\lambda}{\rho \cdot c'_p} = \frac{\text{heat conducted}}{\text{heat stored}}$

Critical Radius

Form Factor Frank-Kamenetskii criterion

Slab

 $\delta_{\rm crit} = 0.88$

r_{crit}: half of thickness of the slab

• Infinite Cylinder

 $\delta_{\rm crit} = 2.0$

r_{crit}: radius of the cylinder

• Sphere

 $\delta_{\rm crit}$ = 3.32

r_{crit}: radius of the sphere

• Cylinder h = 3 r

 $\delta_{\rm crit}$ = 2.37

r_{crit}: radius of the cylinder

• Cube

 $\delta_{\rm crit}$ = 2.5

r_{crit}: half of side length

Thomas Model

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{a} \frac{\partial T}{\partial t} \qquad z = \frac{x}{r_0} \quad \text{and} \quad \theta = \frac{\mathrm{E} \left(\mathrm{T} - \mathrm{T}_0 \right)}{R T_0^2}$$

$$\text{Wall} \qquad \lambda \frac{dT}{dx} + h \cdot \left(T_s - T_0 \right) = 0 \quad \text{à} \ x = r_0 \qquad \frac{d\theta}{dz} + Bi \cdot \theta_S = 0 \quad \text{at} \quad z = 1$$

$$\text{Center} \qquad \frac{dT}{dx} = 0 \quad \text{à} \quad x = 0 \qquad Bi = \frac{h \cdot r_0}{\lambda} \qquad \text{Biot number}$$

$$\text{Variable exchange} \qquad \text{Variable exchange}$$

Conduction in solid and transfer at wall

Zero order reaction

$$\nabla_z^2 \theta = \frac{d^2 \theta}{dz^2} + \frac{k}{z} \frac{d\theta}{dz} = \frac{d\theta}{d\tau} - \delta \exp \theta$$

$$\tau = \frac{at}{r_0^2} \qquad a = \frac{\lambda}{\rho \cdot Cp'}$$

Reaction characteristics

$$\delta = \frac{\rho_0 \cdot q'_0}{\lambda} \cdot \frac{E}{RT_0^2} \cdot r_0^2$$

Heat transfer

$$\delta_{crit} = \frac{1+k}{e \cdot \left(\frac{1}{\beta_{\infty}} - \frac{1}{Bi}\right)}$$

 β_{∞} is called the effective Biot number k: shape coefficient

Slab: k = 0 $\beta_{\infty} = 2.39$ Cylinder: k = 1 $\beta_{\infty} = 2.72$ $Bi = \frac{h \cdot r_0}{\lambda}$ k: shape coefficient

$$k = 0$$

$$k = 1$$

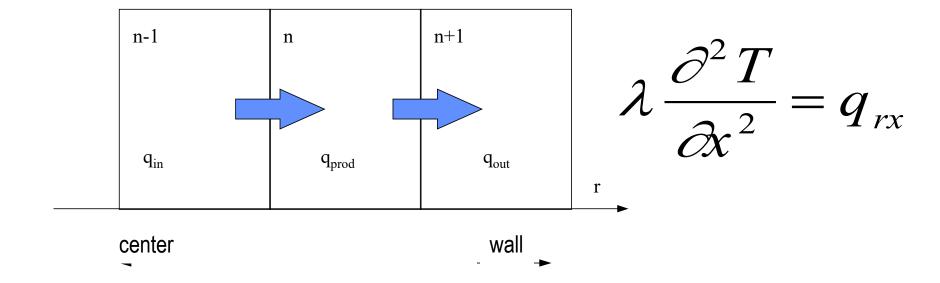
$$\beta_{\infty} = 2.72$$

$$k=2$$
 β

$$\beta_{\infty} = 3.0$$

 δ_{crit} from Thomas model $\neq \delta_{crit}$ from Frank-Kamenetskii model

Reaction characteristics


$$\mathcal{S} = \frac{\rho_0 \cdot q'_0}{\lambda} \cdot \frac{E}{RT_0^2} \cdot r_0^2$$

Heat transfer

$$\delta_{crit} = \frac{1+k}{e \cdot \left(\frac{1}{\beta_{\infty}} - \frac{1}{Bi}\right)}$$

- $\delta > \delta_{crit} \rightarrow$ Temperature situation is unstable \rightarrow runaway
- $\delta < \delta_{crit}$ \rightarrow Temperature situation is stable
- Can search iterativelly for the highest T

Finite elements

- Introduction
- Mechanism of heat transfer
 - Stirred systems, forced convection
 - Solid systems, viscous liquids, conduction
 - Low viscosity liquids, Natural convection
- Analysis procedure
- Practical examples

Natural Convection

$$Nu = C^{te} \cdot Ra^{m}$$

with: $Nu = \frac{hL}{\lambda}$
and: $Ra = \frac{g \cdot \beta \cdot L^{3} \cdot \rho^{2} \cdot Cp' \cdot \Delta T}{\mu \cdot \lambda} = Gr \cdot Pr$

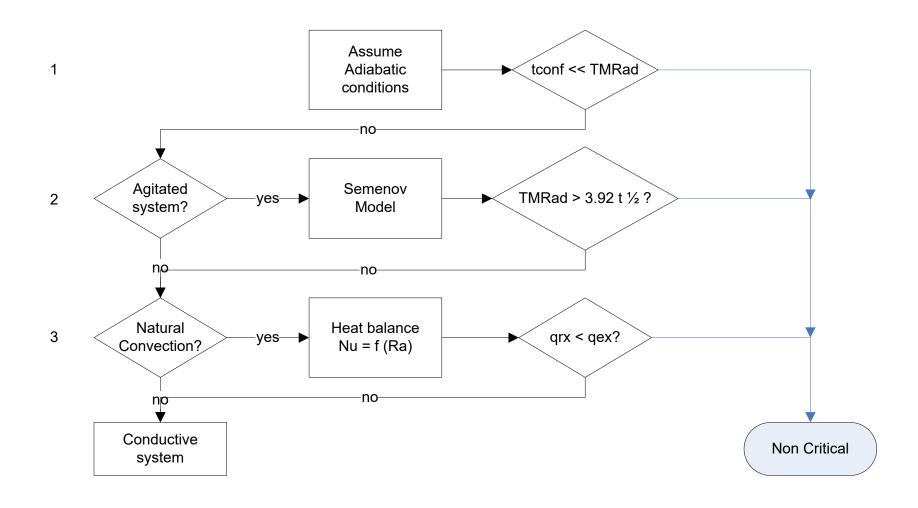
Turbulent flow: $Ra > 10^9$

 $Nu=0,13 \text{ Ra}^{1/3}$

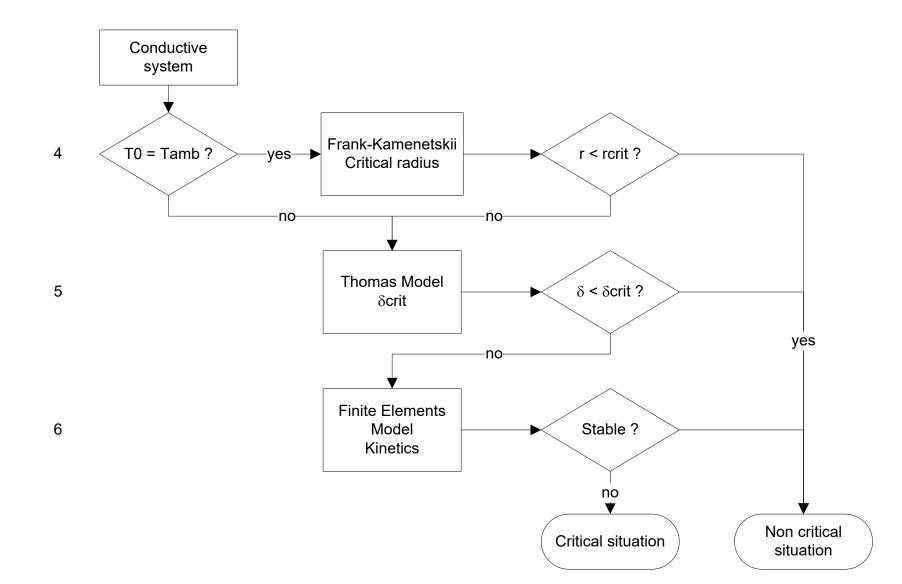
Intermediate flow: $10^4 < Ra < 10^9$

 $Nu = 0.59 \text{ Ra}^{1/4}$

Laminar flow: $Ra < 10^4$

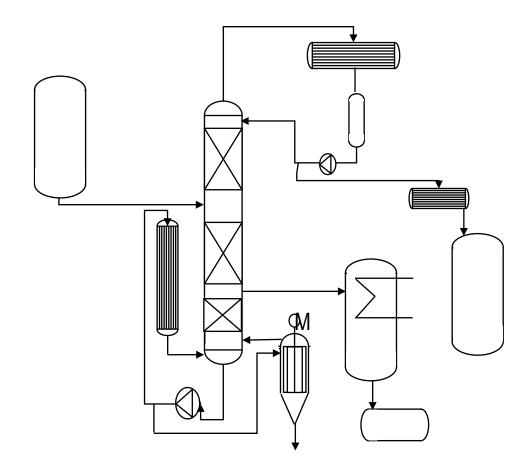

 $Nu = 1,36 \text{ Ra}^{1/6}$

Turbulent flow: likely to have natural convection.

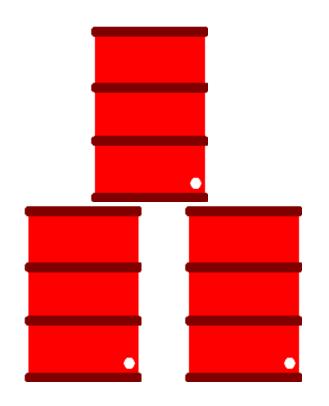

Otherwise, safe not rely on natural convection

- Introduction
- Mechanism of heat transfer
 - Stirred systems, forced convection
 - Solid systems, viscous liquids, conduction
 - Low viscosity liquids, Natural convection
- Analysis procedure
- Practical examples

Decision tree (Part 1)

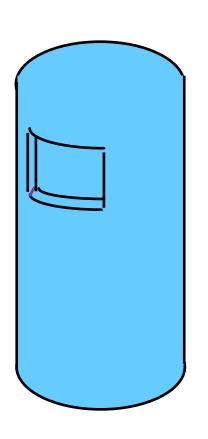


Decision tree (Part 2)

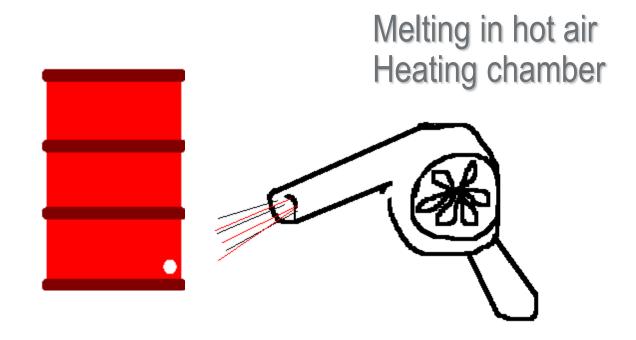

- Introduction
- Mechanism of heat transfer
 - Stirred systems, forced convection
 - Solid systems, viscous liquids, conduction
 - Low viscosity liquids, Natural convection
- Analysis procedure
- Practical examples

Where may Heat Accumulation Occur?

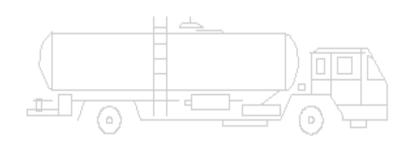
Equipment:


- Distillation residue
- Isolated equipment
- Continous processes at shut down

- Storage
- Hot discharge
- Discharge after thermal stress (Drying, Milling, Blending, Formulation)


Monitor Temperature at Center!

Where may Heat Accumulation Occur?


- Tanks with reactive contents
- Insulated storage tanks
- Changes in thermal insulation

Monitor Temperatur at center!

Monitor Temperature at Center of bulk!

Transport

Example of an exercise

- Intermediate storage of a solid in 1m³ container (IBC) at either 10°C or 30°C
- Stability of the product: Left limit of decomposition peak in DSC is at 125°C and decomposition energy is 500 J/g
- Bulk density is 500 kg/m³; specific heat capacity is 1.3 kJ/(kg·K) thermal conductivity of the solid is 0.25 W/(m·K)

Is storage possible for 1 day, 1 week, 1 month, 1 year?

• How does the assessment change if the storage situation is as shown on the picture

