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Heat Accumulation

• Introduction 

• Mechanism of heat transfer
– Stirred systems: forced convection 
– Solid systems, viscous liquids: conduction
– Low viscosity liquids: natural convection

• Analysis procedure

• Practical examples
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How realistic are adiabatic conditions?
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Adiabatic

Stirred Tank Reactor

Heat Accumulation



Heat accumulation
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Heat accumulation situations: effect of mass
• Decomposition of a reaction mass. ∆Tad 200°C, c‘p: 1.7 kJ/kg.K, Ea: 100 kJ/mol
• Reaction mass is in different containers (different sizes)

Heat release 
rate 

(W/kg)

Temperature 
at beginning 
of storage

(°C)

Adiabatic Mass

0.5 kg 50 kg 5000 kg

10 129
200 ∆T [°C]
0.6 Released after [h]

1 100
200 ∆T [°C]
5.4 Released after [h]

0.1 75
200 ∆T [°C]
47 Released after [h]

0.01 53
200 ∆T [°C]
417 Released after [h]



Heat accumulation
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Heat accumulation situations: effect of mass
• Decomposition of a reaction mass. ∆Tad 200°C
• Reaction mass is in different containers (different sizes)

Heat release 
rate 

(W/kg)

Temperature 
at beginning 
of storage

(°C)

Adiabatic Mass

0.5 kg 50 kg 5000 kg

10 129
200°C 191°C 200°C 200°C ∆T [°C]
0.6 h 0.6 h 0.6 h 0.6 h Released after [h]

1 100
∆T [°C]

Released after [h]

0.1 75
∆T [°C]

Released after [h]

0.01 53
∆T [°C]

Released after [h]



Heat accumulation
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Heat accumulation situations: effect of mass
• Decomposition of a reaction mass. ∆Tad 200°C
• Reaction mass is in different containers (different sizes)

Heat release 
rate 

(W/kg)

Temperature 
at beginning 
of storage

(°C)

Adiabatic Mass

0.5 kg 50 kg 5000 kg

10 129
200°C 191°C 200°C 200°C ∆T [°C]
0.6 h 0.6 h 0.6 h 0.6 h Released after [h]

1 100
200°C 5.8°C 200°C 200°C ∆T [°C]
5.5 h 6h 5.5 h 5.5 h Released after [h]

0.1 75
∆T [°C]

Released after [h]

0.01 53
∆T [°C]

Released after [h]



Heat accumulation
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Heat accumulation situations: effect of mass
• Decomposition of a reaction mass. ∆Tad 200°C
• Reaction mass is in different containers (different sizes)

Heat release 
rate 

(W/kg)

Temperature 
at beginning 
of storage

(°C)

Adiabatic Mass

0.5 kg 50 kg 5000 kg

10 129
200°C 191°C 200°C 200°C ∆T [°C]
0.6 h 0.6 h 0.6 h 0.6 h Released after [h]

1 100
200°C 5.8°C 200°C 200°C ∆T [°C]
5.5 h 6h 5.5 h 5.5 h Released after [h]

0.1 75
∆T [°C]

Released after [h]

0.01 53
∆T [°C]

Released after [h]



Heat accumulation
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Heat accumulation situations: effect of mass
• Decomposition of a reaction mass. ∆Tad 200°C
• Reaction mass is in different containers (different sizes)

Heat release 
rate 

(W/kg)

Temperature 
at beginning 
of storage

(°C)

Adiabatic Mass

0.5 kg 50 kg 5000 kg

10 129
200°C 191°C 200°C 200°C ∆T [°C]
0.6 h 0.6 h 0.6 h 0.6 h Released after [h]

1 100
200°C 5.8°C 200°C 200°C ∆T [°C]
5.5 h 6h 5.5 h 5.5 h Released after [h]

0.1 75
200°C 0.5°C 13°C 200°C ∆T [°C]
48 h 20h 48 h 48 h Released after [h]

0.01 53
∆T [°C]

Released after [h]



Heat accumulation
14

Heat accumulation situations: effect of mass
• Decomposition of a reaction mass. ∆Tad 200°C
• Reaction mass is in different containers (different sizes)

Heat release 
rate 

(W/kg)

Temperature 
at beginning 
of storage

(°C)

Adiabatic Mass

0.5 kg 50 kg 5000 kg

10 129
200°C 191°C 200°C 200°C ∆T [°C]
0.6 h 0.6 h 0.6 h 0.6 h Released after [h]

1 100
200°C 5.8°C 200°C 200°C ∆T [°C]
5.5 h 6h 5.5 h 5.5 h Released after [h]

0.1 75
200°C 0.5°C 13°C 200°C ∆T [°C]
48 h 20h 48 h 48 h Released after [h]

0.01 53
200°C 0.7°C 165°C ∆T [°C]
420 h 154h 420 h Released after [h]



Heat Accumulation in Industrial Context

• Hot discharge

• Heating chambers

• Storage

• Transport

• Inadvertent shut down

• Heated pipes

• https://www.csb.gov/videos/reactive-hazards/
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https://www.csb.gov/videos/reactive-hazards/


Heat balance using time scales
17
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Heat Accumulation

• Introduction 

• Mechanism of heat transfer
– Stirred systems, forced convection 
– Solid systems, viscous liquids, conduction
– Low viscosity liquids, Natural convection

• Analysis procedure

• Practical examples

18



Agitated System

• Semenov
• Newtonian cooling
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Heat balance 
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Heat Balance
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Agitated System
23

• Semenov
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Heat Accumulation

• Introduction 

• Mechanism of heat transfer
– Stirred systems, forced convection 
– Solid systems, viscous liquids, conduction
– Low viscosity liquids, Natural convection

• Analysis procedure

• Practical examples
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Heat Conduction in a Solid
25
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Critical Radius
27
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• Slab

• Infinite Cylinder

• Sphere

• Cylinder h = 3 r

• Cube

Form Factor Frank-Kamenetskii criterion
28

δcrit = 0.88 rcrit: half of thickness of the slab

δcrit = 2.0  rcrit: radius of the cylinder

δcrit = 3.32 rcrit: radius of the sphere

δcrit = 2.37 rcrit: radius of the cylinder

δcrit = 2.5 rcrit: half of side length



Conduction in solid and transfer at wall
30

Thomas Model
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Conduction in solid and transfer at wall
31

Zero order reaction

Slab:  0    2.39
Cylinder:          1    2.72
Sphere:             2    3.01
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Conduction in solid and transfer at wall

• δ > δcrit  Temperature situation is unstable  runaway
• δ < δcrit  Temperature situation is stable

• Can search iterativelly for the highest T

32
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Finite elements 
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Heat Accumulation

• Introduction

• Mechanism of heat transfer
– Stirred systems, forced convection 
– Solid systems, viscous liquids, conduction
– Low viscosity liquids, Natural convection

• Analysis procedure

• Practical examples
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Natural Convection
37
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Turbulent flow : Ra > 109 Nu=0,13 Ra1/3 

Intermediate flow : 104< Ra < 109 Nu = 0,59 Ra1/4 

Laminar flow : Ra < 104 Nu = 1,36 Ra1/6 

 

Turbulent flow: likely to have 
natural convection.

Otherwise, safe not rely on natural 
convection


		Turbulent flow : Ra > 109

		Nu=0,13 Ra1/3



		Intermediate flow : 104< Ra < 109

		Nu = 0,59 Ra1/4



		Laminar flow : Ra < 104

		Nu = 1,36 Ra1/6







Heat Accumulation

• Introduction 

• Mechanism of heat transfer
– Stirred systems, forced convection 
– Solid systems, viscous liquids, conduction
– Low viscosity liquids, Natural convection

• Analysis procedure

• Practical examples
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Decision tree (Part 1)
39

Assume
Adiabatic
conditions

tconf << TMRad

Agitated 
system? TMRad > 3.92 t ½ ?

no

Natural
Convection? qrx < qex?Heat balance

Nu = f (Ra)yes

no no

Conductive 
system

1

2

no

3

no

Semenov
Modelyes

Non Critical



Decision tree (Part 2)
40

Conductive 
system

T0 = Tamb ? Frank-Kamenetskii
Critical radius r < rcrit ?yes

Thomas Model
δcrit δ < δcrit ?

Non critical 
situation

no

yes

no

Finite Elements
Model

Kinetics

no

4

5

6 Stable ?

Critical situation

no



Heat Accumulation

• Introduction 

• Mechanism of heat transfer
– Stirred systems, forced convection 
– Solid systems, viscous liquids, conduction
– Low viscosity liquids, Natural convection

• Analysis procedure

• Practical examples
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Where may Heat Accumulation Occur ?
42

Equipment:
• Distillation residue
• Isolated equipment
• Continous processes

  at shut downM



Where may Heat Accumulation Occur ?
43

• Storage

• Hot discharge

• Discharge after thermal stress 
(Drying, Milling, Blending, 
Formulation)

Monitor Temperature at Center !



Where may Heat Accumulation Occur ?
44

• Tanks with reactive contents
• Insulated storage tanks
• Changes in thermal insulation

Monitor Temperatur at center !



Where may Heat Accumulation Occur ?
45

Monitor Temperature at Center of bulk !

Melting in hot air
Heating chamber



Where may Heat Accumulation Occur ?
46

Transport



47



h



Example of an exercise
49

• Intermediate storage of a solid in 1m3 container (IBC) at either 10°C or 30°C
• Stability of the product: Left limit of decomposition peak in DSC is at 125°C and 

decomposition energy is 500 J/g
• Bulk density is 500 kg/m3; specific heat capacity is 1.3 kJ/(kg·K) thermal conductivity of 

the solid is 0.25 W/(m·K)

• Is storage possible for 1 day, 1 week, 1 month, 1 year?

• How does the assessment change if the storage situation is as shown on the picture
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